July 31, 2014

Using Apache Hadoop and Impala together with MySQL for data analysis

Apache Hadoop is commonly used for data analysis. It is fast for data loads and scalable. In a previous post I showed how to integrate MySQL with Hadoop. In this post I will show how to export a table from  MySQL to Hadoop, load the data to Cloudera Impala (columnar format) and run a reporting […]

Q&A: Common (but deadly) MySQL Development Mistakes

On Wednesday I gave a presentation on “How to Avoid Common (but Deadly) MySQL Development Mistakes” for Percona MySQL Webinars. If you missed it, you can still register to view the recording and my slides. Thanks to everyone who attended, and especially to folks who asked the great questions. I answered as many as we had time […]

Increasing slow query performance with the parallel query execution

MySQL and Scaling-up (using more powerful hardware) was always a hot topic. Originally MySQL did not scale well with multiple CPUs; there were times when InnoDB performed poorer with more  CPU cores than with less CPU cores. MySQL 5.6 can scale significantly better; however there is still 1 big limitation: 1 SQL query will eventually use only […]

Impact of memory allocators on MySQL performance

MySQL server intensively uses dynamic memory allocation so a good choice of memory allocator is quite important for the proper utilization of CPU/RAM resources. Efficient memory allocator should help to improve scalability, increase throughput and keep memory footprint under the control. In this post I’m going to check impact of several memory allocators on the […]

Aligning IO on a hard disk RAID – the Benchmarks

In the first part of this article I have showed how I align IO, now I want to share results of the benchmark that I have been running to see how much benefit can we get from a proper IO alignment on a 4-disk RAID1+0 with 64k stripe element. I haven’t been running any benchmarks […]

Distributed Set Processing with Shard-Query

Can Shard-Query scale to 20 nodes? Peter asked this question in comments to to my previous Shard-Query benchmark. Actually he asked if it could scale to 50, but testing 20 was all I could due to to EC2 and time limits. I think the results at 20 nodes are very useful to understand the performance: […]

Shard-Query turbo charges Infobright community edition (ICE)

Shard-Query is an open source tool kit which helps improve the performance of queries against a MySQL database by distributing the work over multiple machines and/or multiple cores. This is similar to the divide and conquer approach that Hive takes in combination with Hadoop. Shard-Query applies a clever approach to parallelism which allows it to […]

Moving from MyISAM to Innodb or XtraDB. Basics

I do not know if it is because we’re hosting a free webinar on migrating MyISAM to Innodb or some other reason but recently I see a lot of questions about migration from MyISAM to Innodb. Webinar will cover the process in a lot more details though I would like to go over basics in […]

Shard-Query adds parallelism to queries

Preamble: On performance, workload and scalability: MySQL has always been focused on OLTP workloads. In fact, both Percona Server and MySQL 5.5.7rc have numerous performance improvements which benefit workloads that have high concurrency. Typical OLTP workloads feature numerous clients (perhaps hundreds or thousands) each reading and writing small chunks of data. The recent improvements to […]

Analyzing the distribution of InnoDB log file writes

I recently did a quick analysis of the distribution of writes to InnoDB’s log files. On a high-traffic commodity MySQL server running Percona XtraDB for a gaming workload (mostly inserts to the “moves” table), I used strace to gather statistics about how the log file writes are distributed in terms of write size. InnoDB writes […]